Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611718

RESUMO

The purpose of this study was to determine the content of certain phenolic compounds, antioxidant activity, pressing efficiency, extract content, and sugars in celeriac juices obtained from the pulp after α-amylase treatment from Aspergillus oryzae. The test material consisted of peeled and unpeeled celery pulp kept at a temperature of 25 °C with and without the enzyme for a period of 30 and 60 min. The juices obtained from them were analyzed for the content of selected phenolic acids and flavonoids using the UPLC-PDA-ESI-MS/MS method, for antioxidant activity measured using the ABTS˙+ and DPPH˙ method, and for the total polyphenol content using the F-C method. Additionally, the juice pressing efficiency, the extract content using the refractometer method, and the sugar content using the HPLC method were checked. Significantly higher antioxidant activity, pressing yield, and average content of caffeic acid glucoside, quinic acid, kaempferol-3,7-di-O-glucoside, and chrysoeriol-7-O-apiosylglucoside were obtained in juices from peeled celery. Maceration of the pulp with amylase resulted in a significant reduction in antioxidant activity compared to control samples. An is-total increase of 17-41% in total flavonoid content was observed in all juices tested after treatment with the enzyme for 30 and 60 min, and the phenolic acid content increased by 4-41% after treatment of the pulp with amylase for 60 min. The 60 min holding of the pulp at 25 °C, including with the enzyme, was shown to decrease the antioxidant activity and the content of quinic acid, ferulic acid, and chrysoriol-7-O-apiose-glucoside in the juices tested compared to the samples held for 30 min, while the content of other phenolic acids and flavonoids increased. In addition, after 60 min of enzymatic maceration, the pressing yield of the juices increased.


Assuntos
Apium , Aspergillus oryzae , Hidroxibenzoatos , alfa-Amilases , Antioxidantes/farmacologia , Ácido Quínico , Espectrometria de Massas em Tandem , Verduras , Fenóis , Amilases , Flavonoides , Glucosídeos , Extratos Vegetais/farmacologia
2.
Int J Biol Macromol ; 264(Pt 2): 130776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471614

RESUMO

The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.


Assuntos
Apium , Oryza , Oryza/química , Amido/química , Fibras na Dieta , Viscosidade , Água
3.
Pak J Biol Sci ; 27(2): 52-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516746

RESUMO

<b>Background and Objective:</b> Lead poisoning (Pb) is a big problem because it is found in almost all objects in daily life such as vehicle fuel, water pipes, ceramics, cosmetics and others. Continuous lead exposure can increase ROS resulting in an increase in hepatic IL-6 and caspase 3 which replaces hepatic cell apoptosis. The objective of this study was to determine the effect of <i>Apium graveolens</i> (celery) extract on plasma IL-6 and hepatic caspase 3 levels. <b>Materials and Methods:</b> This study used a post-test control group design. The research subjects were 20 Wistar rats that met the inclusion criteria and were divided into 4 groups randomly, namely (a) Sham group that had no treatment, (b) Negative control group was induced with lead acetate 200 mg kg<sup>1</sup> body weight/day without any treatment (c) Positive control group and (d) Treated group. On the 15th day, blood was taken to check IL-6 levels and tissue was taken for liver caspase 3 examination by immunohistochemical method. Data analysis used the one-way ANOVA test and continued with the <i>post hoc</i> LSD test. <b>Results:</b> The highest mean caspase 3 expression was in the control group 45.84±4.39 pg mL<sup>1</sup>, while the mean of IL-6 plasma level was highest in the P1 641.33±39.72 pg mL<sup>1</sup> group. The Mann-Whitney test showed a significant difference in IL-6 levels between the study groups (p = 0.000). The Mann-Whitney test showed a significant difference in caspase 3 levels between the study groups (p = 0.000). <b>Conclusion:</b> Giving celery extract 300 mg kg<sup>1</sup> body weight/day affects plasma IL-6 and hepatic caspase 3 levels in lead acetate-induced rats.


Assuntos
Apium , Intoxicação por Chumbo , Compostos Organometálicos , Animais , Ratos , Apium/química , Peso Corporal , Caspase 3/efeitos dos fármacos , Interleucina-6/sangue , Interleucina-6/química , Interleucina-6/metabolismo , Intoxicação por Chumbo/tratamento farmacológico , Fígado/metabolismo , Modelos Animais , Extratos Vegetais/farmacologia , Ratos Wistar , Verduras/química
4.
Ultrason Sonochem ; 104: 106820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401356

RESUMO

In this study, thermosonication (37 KHz, 300 W; 50, 60, and 70 °C) of celery juice was performed to inactivate Escherichia coli and Salmonella Typhi in 6 min. The inactivation of pathogens and the process were modeled using mathematical, thermodynamic, and computational fluid dynamics models. The findings indicated that the distribution of power dissipation density was not uniform across the entire domain, including the beaker area, with a maximum value of 27.8 × 103 W/m3. At lower temperatures, E. coli showed a 9.4 % higher resistance to sonication, while at higher temperatures, S. Typhi had a 5.4 % higher durability than E. coli. Increasing the temperature decreased the maximum inactivation rate of both S. Typhi and E. coli by 15.5 % and 20.5 % respectively, while increasing the thermal level by 20 °C reduced the log time to achieve the maximum inactivation rate by 20.3 % and 34.9 % for S. Typhi and E. coli respectively, highlighting the stronger effect of sonication at higher temperatures. According to the results, the positive magnitudes of ΔG were observed in both E. coli and S. Typhi, indicating a similar range of variations. Additionally, the magnitude of ΔG increased by approximately 5.2 to 5.5 % for both microorganisms which suggested the inactivation process was not spontaneous.


Assuntos
Apium , Escherichia coli , Salmonella typhi , Hidrodinâmica , Bebidas , Temperatura
5.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336294

RESUMO

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Assuntos
Ensaios Enzimáticos , Fucosiltransferases , Glicosiltransferases , Proteínas de Plantas , Apium/enzimologia , Apium/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/metabolismo , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Fucosiltransferases/análise , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/metabolismo , Espectrometria de Massas , Oryza/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
6.
BMC Complement Med Ther ; 24(1): 88, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355510

RESUMO

BACKGROUND: Gastric ulcers represent a worldwide health problem, characterized by erosions that affect the mucous membrane of the stomach and may even reach the muscular layer, leading to serious complications. Numerous natural products have been assessed as anti-ulcerogenic agents, and have been considered as new approaches for treatment or prevention of gastric ulcers. The present research investigated the preventive benefits of Apium graveolens L. (Apiaceae), known as celery, seed extract towards indomethacin-induced ulceration of the stomach in rats. METHODS: Metabolomic profiling, employing liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), was implemented with the aim of investigating the chemical profile of the seeds. Histopathological analysis of gastric tissues, as well as assessment of numerous inflammatory cytokines and oxidative stress indicators, confirmed the in vivo evaluation. RESULTS: The prior treatment with A. graveolens seed extract resulted in a substantial reduction in the ulcer index when compared to the indomethacin group, indicating an improvement in stomach mucosal injury. Moreover, the gastroprotective effect was demonstrated through examination of the oxidative stress biomarkers which was significantly attenuated upon pre-treatment with A. graveolens seed extract. Vascular endothelial growth factor (VEGF), a fundamental angiogenic factor that stimulates angiogenesis, was markedly inhibited by indomethacin. A. graveolens seed extract restored this diminished level of VEGF. The dramatic reductions in NF-κB protein levels indicate a considerable attenuation of the indomethacin-induced IKκB/NF-κB p65 signaling cascade. These activities were also correlated to the tentatively featured secondary metabolites including, phenolic acids, coumarins and flavonoids, previously evidenced to exert potent anti-inflammatory and antioxidant activities. According to our network pharmacology study, the identified metabolites annotated 379 unique genes, among which only 17 genes were related to gastric ulcer. The PTGS2, MMP2 and PTGS1 were the top annotated genes related to gastric ulcer. The top biological pathway was the VEGF signaling pathway. CONCLUSION: A. graveolens seed extract possesses significant anti-ulcer activity, similar to famotidine, against gastric lesions induced by indomethacin in rats. It is worth highlighting that the extract overcomes the negative effects of conventional chemical anti-secretory drugs because it does not lower stomach acidity.


Assuntos
Antiulcerosos , Apium , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Indometacina/efeitos adversos , Apium/metabolismo , Fator A de Crescimento do Endotélio Vascular , NF-kappa B/metabolismo , Antiulcerosos/efeitos adversos , Extratos Vegetais/uso terapêutico , Transdução de Sinais
7.
Luminescence ; 39(1): e4634, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286605

RESUMO

In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.


Assuntos
Apium , Nanopartículas , Humanos , Celulose/química , Quercetina , Transferrina/química , Adsorção , Nanopartículas/química , Digestão
8.
Planta ; 259(2): 42, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270699

RESUMO

MAIN CONCLUSION: Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.


Assuntos
Apium , Verduras , Humanos , Mudança Climática , Genômica , Poder Psicológico
9.
Analyst ; 149(2): 467-474, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044701

RESUMO

Chloridazon (CLZ) is a selective herbicide used in the control of annual broadleaf weeds. The misuse or abuse of CLZ may result in the accumulation of CLZ in crops and water, which can pose a risk to human health. In this study, a hapten of CLZ with three carbon spacer arms was designed and a highly sensitive and specific antibody against CLZ was prepared with a half-maximal inhibitory concentration of 0.630 ng mL-1 and a linear range of 0.181-2.195 ng mL-1.Based on this antibody, we developed an immunochromatographic assay (ICA) strip for the detection of CLZ in oranges and celery. Under optimized conditions, the visual limit of detection was 2 ng mL-1 and 10 ng mL-1 in oranges and celery, respectively, and the cut-off value was 50 ng mL-1. In CLZ-spiked samples and the recovery test, the results of the ICA strip were consistent with those of indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). Therefore, the ICA strip developed in our study represents an efficient and reliable method for the rapid screening of CLZ in oranges and celery.


Assuntos
Apium , Citrus sinensis , Piridazinas , Humanos , Anticorpos Monoclonais/química , Ensaio de Imunoadsorção Enzimática/métodos , Limite de Detecção , Cromatografia de Afinidade/métodos
10.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069442

RESUMO

The flavonoid glycoside apiin (apigenin 7-O-[ß-D-apiosyl-(1→2)-ß-D-glucoside]) is abundant in apiaceous and asteraceous plants, including celery and parsley. Although several enzymes involved in apiin biosynthesis have been identified in celery, many of the enzymes in parsley (Petroselinum crispum) have not been identified. In this study, we identified parsley genes encoding the glucosyltransferase, PcGlcT, and the apiosyltransferase, PcApiT, that catalyze the glycosylation steps of apiin biosynthesis. Their substrate specificities showed that they were involved in the biosynthesis of some flavonoid 7-O-apiosylglucosides, including apiin. The expression profiles of PcGlcT and PcApiT were closely correlated with the accumulation of flavonoid 7-O-apiosylglucosides in parsley organs and developmental stages. These findings support the idea that PcGlcT and PcApiT are involved in the biosynthesis of flavonoid 7-O-apiosylglucosides in parsley. The identification of these genes will elucidate the physiological significance of apiin and the development of apiin production methods.


Assuntos
Apium , Glicosídeos Cardíacos , Glicosídeos/química , Petroselinum/química , Glicosiltransferases/genética , Flavonoides/química
11.
J Agric Food Chem ; 71(48): 18709-18721, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38009539

RESUMO

The stereoselective behaviors and dietary risks of metconazole (MZE) in soil and five vegetables were investigated. The results showed that there was species-specific stereoselective and diastereoselective dissipation, and the half-lives ranged from 0.69 to 8.17 days. cis-(+)-1S,5R-MZE was preferentially dissipated in soybean pods, cabbages, celeries, and tomatoes, which was contrary to soybean plants and soil. trans-(+)-1R,5R-MZE was preferentially dissipated in peanut plants, peanut shells, celeries, and tomatoes, while trans-(-)-1S,5S-MZE was preferentially dissipated in soybean plants. cis-MZE was preferentially dissipated in the test vegetables and soil, except celery. The stereoisomeric excess changes were higher than 10%, indicating that the stereoselectivity and diastereoselectivity should be considered in the risk assessment of MZE in soybean plants, pods, and peanut plants. The acute and chronic dietary intake risks of rac-MZE for different groups of people were acceptable. The preferentially dissipated and high activity cis-(+)-1S,5R-MZE with lower toxicity might be suitable for application as monocase.


Assuntos
Apium , Brassica , Poluentes do Solo , Solanum lycopersicum , Humanos , Verduras , Arachis , Solo , Estereoisomerismo , Medição de Risco , Poluentes do Solo/análise
12.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834070

RESUMO

The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.


Assuntos
Apiaceae , Apium , Daucus carota , Genoma de Cloroplastos , Genoma Mitocondrial , Magnoliopsida , Filogenia , Apium/genética , Genoma Mitocondrial/genética , Apiaceae/genética , Daucus carota/genética , Magnoliopsida/genética
13.
J Environ Manage ; 348: 119316, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862893

RESUMO

The accumulation of allelochemicals released by plants is commonly found in continuous monocropping systems. These chemicals, such as phenolic acids, were shown to be the major sources of autotoxin or pathogen accumulation in soils, leading to a direct or indirect continuous cropping obstacle. In this study, three types of agricultural residuals, i.e., rice husk, tea waste, and wood meal, were chosen as feedstocks. Biochar samples were prepared from these feedstocks to examine their abilities to remove gallic acid, a representative phenolic acid. Biochar, which was prepared from wood meal soaked with H3PO4 (1:1.5, w/w) and pyrolyzed at 400 °C (symbolized as WP400), exhibited the highest adsorption capacities of gallic acids and other phenolic acids. The mechanisms of phenolic acid removal by WP400 were evaluated via experimental and spectroscopic investigations to elucidate the notable adsorption capacity of WP400. The adsorption of gallic acids was pH-dependent and followed a pseudo-second-order kinetic model. The combination of high surface area, the existence of O-containing groups, and the enhancement of H bonds between CC groups and phenolic acids may contribute to the high adsorption capacity of WP400. In a pot experiment, we found that celery growth was promoted with the addition of 0.3% (w/w) WP400 to soils that were continuously monocropped with celery. A large decrease in the water-soluble phenolic compound by more than 40% may be responsible for the results. However, WP400 scavenged nitrate, and this study showed that the synergistic actions of WP400 and nutrients exhibited the greatest efficiencies in mitigating the continuous cropping obstacles of celery.


Assuntos
Apium , Poluentes Químicos da Água , Disponibilidade Biológica , Carvão Vegetal/química , Solo/química , Adsorção , Poluentes Químicos da Água/química
14.
Int J Biol Macromol ; 253(Pt 3): 126834, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714240

RESUMO

Based on the variety of attractive applicability and structural advantages, cellulose is suggested as a sustainable and environmentally-friendly replacement for petroleum-based materials. Therefore, the current study proposed two chemo-mechanical treatments including bleaching with sodium chlorite and sodium hypochlorite for pure cellulose extraction from leftover celery pulp (Apium graveolens var. dulce). The characterizations of the extracted cellulose fibers were measured and analyzed, by using FT-IR, XRD, optical microscopy, FE-SEM, and TGA analysis. FTIR analysis confirmed the successful removal of non-cellulosic and impurities materials by chemical treatments. Analyzing the X-ray diffraction showed that the proposed chemo-mechanical procedures did not have damaging impacts on the cellulose crystalline structure. Microscopies analysis within optical microscopy and FE-SEM indicated that the diameters of the untreated fibers generally ranged from 100 to 150 µm, while for the treated ones, they ranged from 10 to 15 µm. The TGA results illustrated the higher initial degradation temperatures for the treated samples which led to significant improvement in their thermal stabilities.


Assuntos
Apium , Celulose , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Temperatura Alta
15.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686147

RESUMO

Celery (Apium graveolens L.) is an important vegetable crop cultivated worldwide for its medicinal properties and distinctive flavor. Volatile organic compound (VOC) analysis is a valuable tool for the identification and classification of species. Currently, less research has been conducted on aroma compounds in different celery varieties and colors. In this study, five different colored celery were quantitatively analyzed for VOCs using HS-SPME, GC-MS determination, and stoichiometry methods. The result revealed that γ-terpinene, d-limonene, 2-hexenal,-(E)-, and ß-myrcene contributed primarily to the celery aroma. The composition of compounds in celery exhibited a correlation not only with the color of the variety, with green celery displaying a higher concentration compared with other varieties, but also with the specific organ, whereby the content and distribution of volatile compounds were primarily influenced by the leaf rather than the petiole. Seven key genes influencing terpenoid synthesis were screened to detect expression levels. Most of the genes exhibited higher expression in leaves than petioles. In addition, some genes, particularly AgDXS and AgIDI, have higher expression levels in celery than other genes, thereby influencing the regulation of terpenoid synthesis through the MEP and MVA pathways, such as hydrocarbon monoterpenes. This study identified the characteristics of flavor compounds and key aroma components in different colored celery varieties and explored key genes involved in the regulation of terpenoid synthesis, laying a theoretical foundation for understanding flavor chemistry and improving its quality.


Assuntos
Apium , Compostos Orgânicos Voláteis , Apium/genética , Cor , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Verduras
16.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570794

RESUMO

Apium graveolens is an indigenous plant in the family Apiaceae, or Umbelliferae, that contains many active compounds. It has been used traditionally to treat arthritic conditions, gout, and urinary infections. The authors conducted a scoping review to assess the quality of available evidence on the overall effects of celery when treating neurological disorders. A systematic search was performed using predetermined keywords in selected electronic databases. The 26 articles included upon screening consisted of 19 in vivo studies, 1 published clinical trial, 4 in vitro studies and 2 studies comprising both in vivo and in vitro methods. A. graveolens and its bioactive phytoconstituent, 3-n-butylphthalide (NBP), have demonstrated their effect on neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke-related neurological complications, depression, diabetes-related neurological complications, and epilepsy. The safety findings were minimal, showing that NBP is safe for up to 18 weeks at 15 mg/kg in animal studies, while there were adverse effects (7%) reported when consuming NBP for 24 weeks at 600 mg daily in human trials. In conclusion, the safety of A. graveolens extract and NBP can be further investigated clinically on different neurological disorders based on their potential role in different targeted pathways.


Assuntos
Doença de Alzheimer , Apium , Doenças do Sistema Nervoso , Animais , Humanos , Doença de Alzheimer/complicações , Doenças do Sistema Nervoso/tratamento farmacológico
18.
Molecules ; 28(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630301

RESUMO

Celery seeds have been used as an effective dietary supplement to manage hyperuricemia and diminish gout recurrence. Xanthine oxidase (XOD), the critical enzyme responsible for uric acid production, represents the most promising target for anti-hyperuricemia in clinical practice. In this study, we aimed to establish a method based on affinity ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) to directly and rapidly identify the bioactive compounds contributing to the XOD-inhibitory effects of celery seed crude extracts. Chemical profiling of celery seed extracts was performed using UPLC-TOF/MS. The structure was elucidated by matching the multistage fragment ion data to the database and publications of high-resolution natural product mass spectrometry. Thirty-two compounds, including fourteen flavonoids and six phenylpeptides, were identified from celery seed extracts. UF-LC-MS showed that luteolin-7-O-apinosyl glucoside, luteolin-7-O-glucoside, luteolin-7-O-malonyl apinoside, luteolin-7-O-6'-malonyl glucoside, luteolin, apigenin, and chrysoeriol were potential binding compounds of XOD. A further enzyme activity assay demonstrated that celery seed extract (IC50 = 1.98 mg/mL), luteolin-7-O-apinosyl glucoside (IC50 = 3140.51 µmol/L), luteolin-7-O-glucoside (IC50 = 975.83 µmol/L), luteolin-7-O-6'-malonyl glucoside (IC50 = 2018.37 µmol/L), luteolin (IC50 = 69.23 µmol/L), apigenin (IC50 = 92.56 µmol/L), and chrysoeriol (IC50 = 40.52 µmol/L) could dose-dependently inhibit XOD activities. This study highlighted UF-LC-MS as a useful platform for screening novel XOD inhibitors and revealed the chemical basis of celery seed as an anti-gout dietary supplement.


Assuntos
Apium , Cromatografia Líquida de Alta Pressão , Apium/química , Sementes/química , Xantina Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Plant Physiol ; 193(3): 1758-1771, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433052

RESUMO

Apiose is a unique branched-chain pentose found in plant glycosides and a key component of the cell wall polysaccharide pectin and other specialized metabolites. More than 1,200 plant-specialized metabolites contain apiose residues, represented by apiin, a distinctive flavone glycoside found in celery (Apium graveolens) and parsley (Petroselinum crispum) in the family Apiaceae. The physiological functions of apiin remain obscure, partly due to our lack of knowledge on apiosyltransferase during apiin biosynthesis. Here, we identified UGT94AX1 as an A. graveolens apiosyltransferase (AgApiT) responsible for catalyzing the last sugar modification step in apiin biosynthesis. AgApiT showed strict substrate specificity for the sugar donor, UDP-apiose, and moderate specificity for acceptor substrates, thereby producing various apiose-containing flavone glycosides in celery. Homology modeling of AgApiT with UDP-apiose, followed by site-directed mutagenesis experiments, identified unique Ile139, Phe140, and Leu356 residues in AgApiT, which are seemingly crucial for the recognition of UDP-apiose in the sugar donor pocket. Sequence comparison and molecular phylogenetic analysis of celery glycosyltransferases suggested that AgApiT is the sole apiosyltransferase-encoding gene in the celery genome. Identification of this plant apiosyltransferase gene will enhance our understanding of the physioecological functions of apiose and apiose-containing compounds.


Assuntos
Apium , Flavonas , Apium/genética , Glicosídeos , Filogenia
20.
Nat Commun ; 14(1): 4050, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422469

RESUMO

Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity in health and disease. However, the lack of physical relationships among dissociated cells has limited its applications. To address this issue, we present CeLEry (Cell Location recovEry), a supervised deep learning algorithm that leverages gene expression and spatial location relationships learned from spatial transcriptomics to recover the spatial origins of cells in scRNA-seq. CeLEry has an optional data augmentation procedure via a variational autoencoder, which improves the method's robustness and allows it to overcome noise in scRNA-seq data. We show that CeLEry can infer the spatial origins of cells in scRNA-seq at multiple levels, including 2D location and spatial domain of a cell, while also providing uncertainty estimates for the recovered locations. Our comprehensive benchmarking evaluations on multiple datasets generated from brain and cancer tissues using Visium, MERSCOPE, MERFISH, and Xenium demonstrate that CeLEry can reliably recover the spatial location information for cells using scRNA-seq data.


Assuntos
Apium , Transcriptoma , Transcriptoma/genética , Apium/genética , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...